Brain-like Functions in Evolving Connectionist Systems for On-line, Knowledge-Based Learning

نویسنده

  • Nikola Kasabov
چکیده

The paper discusses some biological principles of the human brain that would be useful to implement in intelligent information systems (IS). These principles are used to formulate seven major requirements to the current and the future IS. These requirements are met in a new connectionist architecture called evolving connectionist systems (ECOS). ECOS are designed to facilitate building on-line, adaptive, knowledge-based IS. ECOS evolve through incremental, hybrid (supervised/unsupervised), on-line learning. They can accommodate new input data, including new features, new classes, etc. through local element tuning. The ECOS framework is presented and illustrated on a particular type of evolving neural networks evolving fuzzy neural networks (EFuNNs). EFuNNs can learn spatial-temporal sequences in an adaptive way, through one pass learning. Rules can be inserted and extracted at any time of the system operation. ECOS and EFuNNs are suitable for adaptive pattern classification; adaptive, phonemebased spoken language recognition; adaptive dynamic time-series prediction; intelligent agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering Rules of Adaptation and Interaction: From Molecules and Gene Interaction to Brain Functions

Many systems in Biology and Nature are characterized by a continuous adaptation and by a complex interaction of many variables over time. Such systems can be observed at different levels of the functioning of a living organism, e.g.: molecular, genetic, cellular, multicellular, neuronal, brain function, evolution. One of the challenges for information science is to be able to represent the dyna...

متن کامل

DUNEDIN NEW ZEALAND Evolving Connectionist Systems for On-line, Knowledge-based Learning: Principles and Applications

The paper introduces evolving connectionist systems (ECOS) as an effective approach to building on-line, adaptive intelligent systems. ECOS evolve through incremental, hybrid (supervised/unsupervised), on-line learning. They can accommodate new input data, including new features, new classes, etc. through local element tuning. New connections and new neurons are created during the operation of ...

متن کامل

Evolving Connectionist Systems for On-line, Knowledge-based Learning: Principles and Applications

The paper introduces evolving connectionist systems (ECOS) as an effective approach to building on-line, adaptive intelligent systems. ECOS evolve through incremental, hybrid (supervised/unsupervised), on-line learning. They can accommodate new input data, including new features, new classes, etc. through local element tuning. New connections and new neurons are created during the operation of ...

متن کامل

Evolving Connectionist Systems for On-Line Pattern Classification of Multimedia Data

The paper develops further the concept of evolving connectionist systems, and one particular model – evolving fuzzy neural networks, that are applied on pattern classification tasks of multimedia data. The evolving systems learn in an on-line, life-long learning mode and adapt to the new data. This mode is crucial when the system is required to adapt quickly to new data and be able to generaliz...

متن کامل

Evolutionary Computation For On-Line And Off-Line Parameter Tuning Of Evolving Fuzzy Neural Networksc

This work applies Evolutionary Computation to achieve completely self-adapting Evolving Fuzzy Neural Networks (EFuNNs) for operating in both incremental (on-line) and batch (off-line) modes. EFuNNs belong a class of Evolving Connectionist Systems (ECOS), capable of performing clustering-based, on-line, local area learning and rule extraction. Through EC, its parameters such as learning rates an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001